《 人民日报海外版 》( 2023年03月30日 第 09 版)
近日,位于天津市河北区的天津市人工智能计算中心正式揭牌并接入中国算力网。首批100P算力已满载上线投入运营,未来还将扩容200P算力,为人工智能应用企业、高校和科研机构等提供普惠公共算力服务。 |
近期,科技部会同自然科学基金委启动“人工智能驱动的科学研究”(AI for Science)专项部署工作,布局“人工智能驱动的科学研究”前沿科技研发体系。记者采访了中国科学院院士、北京大学国际机器学习研究中心主任鄂维南,科技创新2030-“新一代人工智能”重大项目实施专家组组长、中科院自动化研究所所长徐波,科技创新2030-“新一代人工智能”重大项目实施专家组成员、北京科学智能研究院副院长张林峰,对“人工智能驱动的科学研究”专项部署工作进行详细解读。
发挥中国人工智能优势
问:推动“人工智能驱动的科学研究”专项部署工作的背景和意义是什么?
徐波:随着新一代人工智能技术的蓬勃发展,科学研究范式正在发生新变革,推动基础科学的重大发现和突破。人工智能已成为继实验、理论、计算之后的科学研究新范式。
近年来,我国人工智能技术发展快速、科研数据和算力资源日益丰富、科学研究领域应用场景不断拓展,为加快推动“人工智能驱动的科学研究”发展奠定了坚实基础。专项部署工作将进一步加强对其创新工作的统筹指导、系统布局,充分发挥我国在人工智能方面的优势,加速科学研究范式变革和能力提升,推动人工智能走向高质量应用新阶段。
鄂维南:我们正在迎来新一轮的科技革命,有很重要的一点是科学研究从“作坊”模式转变到“平台科研”模式。
在科研活动中,如材料研究、生物制药研究等,存在很多共性,理论上用的物理模型和基本原理,是有限的、有共性的,研究中用的实验手段亦如是。人工智能技术发展至今,能让我们将这些共性的工具串联起来,从整体角度看待科研,大幅提高科研效率。“人工智能驱动的科学研究”有可能推动我们在下一轮科技革命中走在前沿。
推动学科知识体系重构
问:“人工智能驱动的科学研究”的特点是什么?我国在相关方面研究水平如何?
张林峰:“人工智能驱动的科学研究”最大的一个特点是,它以一种前所未有的方式,将不同学科、不同背景的人们联系在一起。
“人工智能驱动的科学研究”既需要计算机、数据科学、材料、化学、生物等学科的交叉融合,同时也需要数学、物理等基础学科进行更加深入的理论构建和算法设计,是一个学科与知识体系大重构的过程。
鄂维南:“人工智能驱动的科学研究”是以“机器学习为代表的人工智能技术”与“科学研究”深度融合的产物。
近年来,国内多所高校、科研机构都在科学智能领域积极布局,国内企业也在投入巨大力量来推动科学智能发展和产业落地。我们率先意识到人工智能方法对基础科学研究可能产生的影响,全面布局人工智能驱动的科学研究和培养科研团队,将人工智能方法、高性能计算与物理模型相结合,并已走在了国际前沿。
紧抓重点领域科研需求
问:本次专项部署工作结合的学科与围绕的领域有哪些考虑?
徐波:数学、物理、化学、天文、地球科学、生命科学等基础学科为科技发展提供了重要理论基础,紧密结合这些基础学科关键问题,布局“人工智能驱动的科学研究”前沿科技研发体系,是增强基础科学研究竞争力的重要保证。药物研发、基因研究等领域,是人工智能与科学研究结合需求迫切、进展突出、具有代表性的重要方向。
打造智能化科研创新生态
问:“人工智能驱动的科学研究”未来还有哪些规划与建议?
徐波:科技创新2030-“新一代人工智能”重大项目将在第二个五年实施阶段(2023-2027年)持续加强体系化布局和支持力度,推动研究新理论、新模型、新算法,研发软件工具和专用平台,推进软硬件计算技术升级,打造智能化科研的开源开放创新生态。
在平台支撑方面,科技部正在加快推动国家新一代人工智能公共算力开放创新平台建设;在机制创新方面,科技部鼓励用户单位围绕业务深度挖掘技术需求和科学问题,深度参与模型研究与算法创新,积极开放数据、资源。
鄂维南:着眼未来“人工智能驱动的科学研究”发展,首先要把资源真正配置到做实事的一线科研人员手里。同时要有有效的人才培养体系,培养对于基本原理和实际问题都有充分了解的人才。
“人工智能驱动的科学研究”对科研团队提出了全新要求,真正让人工智能的研究人员与基础科学领域研究人员一起工作,进行高频率的日常学术交流,同时引入工程化人才,从行业需求出发,开发出可实际应用并持续迭代的新工具与软件。
(据新华社电 记者宋 晨)