超冷原子量子模拟领域
我国科学家获重大突破
本报北京10月11日电 (记者吴月辉)记者从中国科学院获悉:中国科学技术大学和北京大学联合团队在国际上首次理论提出并实验实现超冷原子二维自旋轨道耦合的人工合成,测定了由自旋轨道耦合导致的新奇拓扑量子物性。研究成果发表在最新一期国际权威期刊《科学》上。这一关键突破将推动拓扑超流、拓扑超导等新奇拓扑量子物态的研究,进而给人们对物质世界的深入理解带来重大影响。《科学》杂志评论认为,该工作“对研究超越传统凝聚态物理的奇异现象具有重大潜力”。
论文第一通讯作者、中科大潘建伟院士介绍,自旋轨道耦合是量子物理学中基本的物理效应,它在多种基本物理现象和新奇量子物态中扮演了核心角色。对这些现象的研究产生了自旋电子学、拓扑绝缘体、拓扑超导体等当前凝聚态物理中最重要的前沿研究领域。然而,由于普遍存在难以控制的复杂环境,很多重要的新奇物理难以在固体材料中进行精确研究,对相关科研工作带来很大挑战。
“随着超冷原子物理量子模拟领域的重大发展,科学家们发现在超冷原子中能够实现人工自旋轨道耦合。”论文通讯作者之一、北京大学教授刘雄军说,“冷原子有环境干净、高度可控等重要特性。在过去5年里,一维人工自旋轨道耦合已在实验上实现,并取得一系列成果。但探索广泛深刻的新型拓扑量子物态须获得二维以上的自旋轨道耦合,而在超冷原子中实现高维自旋轨道耦合在理论上和实验上都是极具挑战性的问题,难度很大,国际上多个团队均为此付出许多努力。”
为解决这一根本困难,北京大学刘雄军理论小组提出了所谓的拉曼光晶格量子系统。发现基于该系统,不仅可完好地实现二维人工自旋轨道耦合,并能得到如量子反常霍尔效应和拓扑超流等深刻的基本物理效应。基于该理论方案,中国科学技术大学潘建伟、陈帅和邓友金等组成的实验小组在经过多年艰苦努力发展起来的超精密激光和磁场调控技术的基础上,成功地构造了拉曼光晶格量子系统,合成二维自旋轨道耦合的玻色—爱因斯坦凝聚体。
“我们进一步研究发现,合成的自旋轨道耦合和能带拓扑具有高度可调控性。该工作将对冷原子和凝聚态物理研究产生重大影响,基于此工作可研究全新的拓扑物理,包括固体系统中难以观察到的玻色子拓扑效应等,从而为超冷原子量子模拟开辟了一条新道路。这项工作显示我国在超冷原子量子模拟相关研究方向上已走在国际最前列。”潘建伟说。
《 人民日报 》( 2016年10月12日 20 版)